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Lecture 15:

e Continuous Distributions

e Basic Definitions

* Importance of the CDF

 Calculation of probabilities using integration
e Uniform Continuous Distribution

e Introduction to Normal Distribution



Discrete vs Continuous Distributions

Recall: A Random Variable X is a function from a sample space S into the reals:
X: S5->R
A random variable is called continuous if Rx is uncountable.

What needs to change when working with continuous as opposed to discrete
distributions?

Recall: The probability of a random experiment such as a spinner

outputting any particular, exact real number is O: 0o

x@@) = PX=a) =0

This result extends to any countable collection of

real numbers! 0.75 \ |

So we can only think about (countable unions of) intervals:

P(0.5 < X < 0.75) = 0.25 05



Probability Functions: Equiprobable vs Not Equiprobable

When the sample space is uncountable, say with the spinner, it is possible for the
probability function to be equiprobable or non-equiprobable.

0.0

Uncountable and Equiprobable:

Example: Spin the spinner and report the real number
showing.

0.75 0.25

S=[0..1) Any point is equally likely

0.5

Uncountable and NOT Equiprobable:
Example: Heights of Human Beings:

People are more
likely to be close
to the average
height than at the

extremes!




Review: Cumulative Distribution Functions

The Cumulative Distribution Function (CDF) for a random variable X shows what

happens when we keep track of the sum of the probability distribution from left to
right over its range:

Fx(h) = P(X <k)= ) Px(@

a<k

Example: X = “The number of dots showing on a thrown die”

Probability Distribution Function Py Cumulative Distribution Function Fx




Discrete vs Continuous Distributions: PDF vs PMF

Because of the anomolies having to do with continuous probability, we need to keep
the following important points in mind:

(A) We will no longer be able to use a discrete Probability Mass Function, but instead
a Probability Density Function (PDF), fx(a).

(A) The probability function fx does NOT represent the probability of a point in the

domain, since as we know:

fx(@) = PX=a) =0

therefore we can ONLY work with intervals P(X < a), P(X > a), P(a < X < b), etc.
and fy is not as important as the CDF Fy .
b

(B) In calculating Fx and working with intervals, we can not use discrete sums Z
X=a

b
as we did in the discrete case, but will have to use integrals: /

(C) The range Ry will be all the reals (—o0..0) and so we don’t specify it each time.



Discrete vs Continuous Distributions

Discrete Random Variables

The Probability Mass Function (PMF)

of a discrete random variable X is a
function from the range of X into R :

P, : Ry » R

such that

() Vye Ry Px(») > 0.0

() ), Px(» =10

YERx

Continuous Random Variables

The Probability Density Function (PDF)

of a continuous random variable X is a
function from ‘R to R :

fr it R R

such that

i) Vy fx(») =0.0

i [ oay=10




Continuous Distributions

0.0
Let’s clarify these ideas with an example....

Consider the spinner example from way back when:

X = “the real number in [0..1) that the spinner lands on” o7 o

'The probability density function is:

1 f0<x<1 0-5
fx) = _
0 otherwise PDF for U(0,1)

10

0.8 1

Note that the area is 1.0 and for
any 0 < a <1, we have 06

fix)

f(a) = 1.0, so it is uniform across a4

[0..1). But clearly P(X =a) = 0.0.

0.2 4

0.0 1

-0.50 -0.25 0.00 0.25 0.50 0.75 100 125 150
x in Range(X)



Continuous Distributions @

Now recall that the ONLY way to deal with

continuous probability is to use intervals and P(X <0.75) = F(0.75) = 0.75
to use area (or extent) for the probability. |
Hence we will calculate probabilities of | ey |
intervals using the CDF: 101
] f0=<x<1 )
o= { ! 05
0 otherwise "
a a . -0.50 —0?25 O,EIO 0,'25 ) 350 - O,ils 160 liS léo
F(a) = / ldx =x|, =a cortormon |
O 10 1 :
0 .
075 '
0 ifa<O
Fla)=4 a if0<a<l
1 ifa>1

~0.50 -025 0.00 0.25 0.50 075 100 125 150
x in Range(X)



A brief review of
a integration is on the YT
F(a) = /

1 dx a channel!

o0



Continuous Distributions P(0.5 < X)

P(05<X<075)=P(X<075) — P(X<0.5)
= F(0.75) — F(0.5)
= 075 — 05 PDFfoéU(O.l)

=X
N
e
A
o
~]
()
p—

e —— —

=0.25

N

0.8 1

1 f0<x<L1
fx) = _ 2 |
0 otherwise "

fix)

0.2 1

7

0.0 1

5 100 125 150

a -0.50 025 0.00 025 0do 0

a xin Ra!u;e(X)

F(a) = 1 dx = X 0 =da CDF fonU(0,1)
0

10 1

—— = = = —— ==

0.8 1

0.75

0 ifa<O 0.5 2™
F@=4 a if0<a<l
1 ifa>1 N

P(X <=k)

0.2 1




Continuous Distributions

Bottom Line: In order to deal with continuous distributions, you have to either
calculate areas using geometric techniques, or do integrals.

Example: Suppose our PDF looked like this: is

08

2 fo<x<? :
fx) =4 2 .

0 otherwise

0.0

1 +
-1.0 -05 00 0:5 10 15 20 25 30
1

To calculate the probability of intervals, we need to determine the CDF, which means

doing the following integral: Lo
a a2
F(a)=/ —dx = — B
S 4 ’

So for example,

12 052
ijsxsn=fupmm$=-z___

1
4 4 16 16



F(a) = /_



Continuous Distributions

Discrete Random Variables Continuous Random Variables
b
Fxy(b) = P(X <b) =def EPX(y) Fx(b) = P(X <b) =get / f(x)dx
y<b -
b
P(a< X <b) =4y Z Py(y) P(a<X <Db) =def/a f(x) dx
a<y<b
EX) =as ), ¥* Px() E(X) = / *-fx) dx
YERY

Same for both Discrete and Continuous Random Variables

Var(X) =g E[(X = px)?] ox =dagr \/Var(X)

_ 24 2
Var(X) = E(X") — (ux) All previous theorems about E(X) and

Var(X) still hold, it does not matter
whether X is continuous or discrete!



Example: Calculate the expected value of the uniform
distribution over the interval [0..1):

0.75

E(X) = /oox-f(x) dx

(0.0)

Ry = [0..1)

]l H#0<x<1
o= !

otherwise

PDF for U(0,1)

fix)




Example: Calculate the variance of the uniform distribution
over the interval [0..1):

0.75 0.25

Var(X) = E(X*) — (pux)* e
Rx = [0..1)

Jx) =

{ 1 < x<1
otherwise

PDF for U(0,1)

08

fix)




Example: Calculate the expected value of the following

distribution over the interval [0..2):
RX - [02)

E(X)=/°°x-f(x)dx { ifi < 22
-0 f) =

O =

otherwise

PDF




Example: Calculate the variance of the following distribution

over the interval [0..2):

Var(X) = E(X*) - (px )’

RX - [02)

-4

if0<x<2

O =

otherwise

PDF




Uniform Distribution

X ~U(a,b)
1 ;
fa<x<b
fx(x)={b—a
0 otherwise
(0 iExs<ca
Fy@=4 57— ifa<x<b iy
e 1 if x>b
4 2.b ) b
E(X)=/x-1dx= 1 2p _ B-d _ bta
a b—-a b—a 2la 2(b —a) p)
2 3 3 3 3) 2
1 1 b _
E(X2)=/x2. e = X _ b’ —a _ a+ab+b
a  b-a b—a 3la = 30b-a) 3

Var(X) = EX?) - EX)? = @’ +ab + b’ B a* —2ab+b @ +2ab+b _ (b-a)
) . 4 T 12 12




Probability

Normal Distribution as Limit of Binomial

When we observe the characteristic shape of the Binomial Distribution B(N,0.5) as N
approaches Infinity, we see something interesting:

040 B(3,0.5') (PMF)

035

0.30

0.25

0.20

(=)
(=
(8]

0.10

0.05

0.00
-0.5 0.0 0.5 10 15 20 25 3.0 35

Outcomes



Probability

Normal Distribution as Limit of Binomial

How to approximate the binomial? When we observe the characteristic shape of the Binomial
Distribution B(N,0.5) as N approaches Infinity, we see something interesting:

035 ' , ’ B(6,0.5‘) (PMF)

0.30

0.25 |

0.20

[=J
(=1
(8]

0.10 |

0.05}

0.00
-1

Outcomes



Normal Distribution as Limit of Binomial

How to approximate the binomial? When we observe the characteristic shape of the Binomial
Distribution B(N,0.5) as N approaches Infinity, we see something interesting:

Probability

0.20 : , ‘ B(15.0.5) (PMF)

015}

010}

0.05 |
oo 2 3 6 B 10 5

14 16

Outcomes



Probability

Normal Distribution as Limit of Binomial

How to approximate the binomial? When we observe the characteristic shape of the Binomial
Distribution B(N,0.5) as N approaches Infinity, we see something interesting:

016 B(25,0.5) (PMF)

014

012}

0.10

0.08 |

0.06 |

0.04

002}

0.00
0 25

Outcomes



Probability

Normal Distribution as Limit of Binomial

How to approximate the binomial? When we observe the characteristic shape of the Binomial
Distribution B(N,0.5) as N approaches Infinity, we see something interesting:

012 ' ' B(50.0,'5) (PMF)

0.10

0.08

006}

0.04

0.02

0.00
10 15 20 25 30 35 40
Outcomes




Probability

Normal Distribution as Limit of Binomial

How to approximate the binomial? When we observe the characteristic shape of the Binomial
Distribution B(N,0.5) as N approaches Infinity, we see something interesting:

0.08 , ‘ ‘ B(100,0.5) (PMF)

0.07 |

0.06 |

0.05 |

0.04

0.03 }

0.02}

001}

0.00
30 35 40 45 50 55 ] 65 70

Outcomes



Probability

Normal Distribution as Limit of Binomial

How to approximate the binomial? When we observe the characteristic shape of the Binomial
Distribution B(N,0.5) as N approaches Infinity, we see something interesting:

0.05 : , ‘ 8(300.0.‘5) (PMF)

0.04

0.03

0.02}

001}

110 120 130 140 150 160 170 150 190
Outcomes



Probability

Normal Distribution as Limit of Binomial

How to approximate the binomial? When we observe the characteristic shape of the Binomial
Distribution B(N,0.5) as N approaches Infinity, we see something interesting:

0.040 B{SOO.O.KS) (PMF)

0.035

0.030

0.025

0.020

0.015

0.010 f

0.005

0.000
210 220 230 240 250 260 270 280 290

Outcomes



Probability

Normal Distribution as Limit of Binomial

How to approximate the binomial? When we observe the characteristic shape of the Binomial
Distribution B(N,0.5) as N approaches Infinity, we see something interesting:

0.030 , ' B(lOOO,Q.S) (PMF)

0.025

0.020

0.015

0.010

0.005

0.000
440 450 4380 500 520 540 560
Outcomes



Normal Distribution as Limit of Binomial
How to approximate the binomial? When we observe the characteristic shape of the Binomial
Distribution B(N,0.5) as N approaches Infinity, we see something interesting:

0.030 B(looo,q.5) (PMF)

440 460 480 500 520 540 560
Outcomes



Normal Distribution as Limit of Binomial

How to approximate the binomial? When we observe the characteristic shape of the Binomial
Distribution B(N,0.5) as N approaches Infinity, we see something interesting:

0.030 B(looo.q.s) (PMF)

440 460 450 500 520 540 560
Outcomes



Normal Distribution

By using parameters to fit the requirements of probability theory (e.g., that the area
under the curve is 1.0), we have the formula for the Normal Distribution, which can
be used to approximate the Binomial Distribution and which models a wide variety of
random phenomena:

1 (x—#)z

fla)= ———=e

2o
h - 250 EEEI KA Sl G A d S AL R EASA R R AN
where L H=0, 02=0.2, ==
=0, 0221.0,— E
p = mean/expected value 08 I\ 5:0. 62250, —
o : [i=-2, 02205, ——
o = standard deviation / \
0.6
02 = variance B / \ / \
04
0.2 i \
L // ‘\\
_5|||-4|| = | = | -1|| Onlulnlnznl . | 4:].



Normal Distribution

The normal distribution, as the limit of B(N,0.5), occurs when a very large

number of factors add together to create some random phenomenon.

Example: What is the height of a human being?

0.25

0.20

0.05

0.00
58

Height of 2500 Individuals




Normal Distribution

The normal distribution, as the limit of B(N,0.5), occurs when a very large

number of factors add together to create some random phenomenon.

Example: What is the IQ of a human being?

IQ Normal Curve

Standard Devigtons 4 3 2 1 0 1 2 3 4
Viechsor 12 £ 6< 70 &5 100 115 130 145 160
Stanioed Bt KO 35 52 506 A 100 1€ 132 148 164

Cumulsbve % 0003 0135 27275 15866 S0 000 B41349 97,7264 998865 93 997



Normal Distribution

The normal distribution, as the limit of B(N,0.5), occurs when a very large

number of factors add together to create some random phenomenon.

Example: What is the distribution of measurement errors?

J’ﬂo.! Lihaly NMaossured Vaiue

G027 % of Mesasuiniimata
wAll bo owith I this

8
=
e
=
=
E(Amnént ot Moa.ur?rnont)g '—:-i-&':‘f;-.u

D: or :

%
E &\n\(:u.n’::n. ;.t.r ov}
] ]
|

ALmwus »

) Slgma axis .
20 (Amount of Cartalnty) (207 R ey

vallnm



Normal Distribution

The normal distribution, as the limit of B(N,0.5), occurs when a very large

number of factors add together to create some random phenomenon.

Example: Even REALLY IMPORTANT things are normally distributed!

Distribution of Pizza Delivery Times
Normal, Mean=30, StDev=5

-3 SD -25D -1SD 1

(w)
w
Q

0.09
0.08
0.07
0.06

0.05

Density

0.04

0.03

0.02-

0.01

S A PP ppp——.
L e e e e e e e e e e e e e G

0.00

B -

45

15 20 25 30
Minutes

w
W



Normal Distribution

Recall that the only way we can analyze probabilities in the continuous case is
with the CDF:

Probability Distribution for N(66,9) o= 3.0

flz) = e 2%’ .
\V 2o

0.00

x in Range(X)

) _
F(a) = / f(x) dx

P(X < a) = F(a) 06

P(X < k)

P(X >a)=1.0 - F(a)

P(a<X<b)= F(b)-F(a) B : 5

395



Probability

Normal Distribution  Suppose heights at BU are distributed normally with a
mean of 68 inches and a standard deviation of 1.8
inches.

Normal Distribution: N(68, 3.24)

0.20 1

0.15 1

0.10 1

0.05 1

0.00 1
62 64 66 63 70 ) 74
Range of RV X
mean = 68
var = 3.24

stdev = 1.8



Normal Distribution

How many people are of less than average height?

Normal Distribution: N(68, 3.24)

0.25 1

b =68

0.20 -

0.15 -

Probability
-

(=]

=

0.05 -

0.00

B2 B4 55 B 70 72
Range of RV X



Normal Distribution

ow many people are less than 70 inches?

Normal Distribution: N(68, 3.24)
0.20 |
0.15 |
2
=
§ 0.10 -
&
0.05 1
0.00 1
62 64 66 63 70 72 74
Range of RV X
mean = 68
var = 3.24
stdev = 1.8
P(X < 70) = 0.8667




Probability

Normal Distribution

How many people are less than 67 inches?

Normal Distribution: N(68, 3.24)

]
]
0.20 - -
I
]
]
]
|
|
0.15 - :
]
]
|
|
]
]
0.10 - a3
|
|
|
]
]
]
0.05 - -
|
]
]
]
]
|
0.00 - :
1 1 1 1 I I 1
62 B4 66 ] 70 72 74
Range of RV X
mean = 6




Probability

0.20 1

0.15 -

0.10 1

0.05 1

0.00

Normal Distribution

How many people are between 67 and 70 inches?

Normal Distribution: N(68, 3.24)

a=6a7

&0 62 64 66 68 70 72 74 76
Range of RV X

mean = 68

var = 3.24

stdev = 1.8

P(67 < X < 70) = P(X < 70) - P(X < 67) = 0.8667 — 0.2893 = 0.5775



Probability

Normal Distribution

How many people are within one standard deviation
of the mean height?

Normal Distribution: N(68, 3.24)

020 -
0.15 -
010 -
0.05 -
0.00
62 64 66 &8 70 72 74
Range of RV X

mean = 68

var = 3.24

stdev = 1.8

P(66.2 < X < 69.8) = P(X < 69.8) - P(X < 66.2) = 0.8413 - 0.1587 = 0.6827



Normal Distribution

Modern people use the appropriate formulae:

def f normal (mu,var,x):
return (1/(math.sqrt(var*2*math.pi))) * math.exp(-(x-mu)*(x-mu)/(2*var))

def F normal (mu,var,x):
return (1 + math.erf((x-mu)/(var**0.5 * 2.0**0.5))) / 2

def normalRange(mu,var,low,high):
return F normal (mu,var,high) - F normal(mu,var,low)
# OR use the scipy.stats.norm functions given at the top of the notebook:
# Loc = mean, scale = standard deviation
norm.pdf (x=50,loc=40,scale=5)
norm.cdf (x=50,1oc=40,scale=5)

norm.rvs(loc=40,scale=5) # random variates

42



Normal Distribution

Or a calculator or a web site:

= Enter a value in three of the four text boxes.
= Leave the fourth text box blank.

= Click the Calculate button to compute a value for the blank text
box.

Standard score (z) 1.5
Cumulative probability: P(Z P
<1.5) '
Mean 0
Standard deviation 1

Calculate

43



